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1. Alternating series.

The following are alternating series:

∞∑
k=1

(−1)k+1 = 1−1+1−1+· · ·+(−1)k+1+· · · ,

∞∑
k=1

(−1)k+1

k
= 1−

1

2
+

1

3
−

1

4
+· · ·+

(−1)k+1

k
+· · · ,

∞∑
k=1

(−1)k−1

2k−1
= 1−

1

2
+

1

22
−

1

23
+· · ·+

1

2k−1
+· · · .

Definition 1. (Alternating Series)

An alternating series is of form

∞∑
k=1

(−1)k−1ak = a1 − a2 + a3 − a4 + · · ·

+ (−1)k−1ak + · · · ,

where each ak > 0.



Theorem 1. (Alternating Series Test; Leib-

niz)

The alternating series

∞∑
k=1

(−1)k−1ak = a1 − a2 + a3 − a4 + · · ·

+ (−1)k−1ak + · · · ,

converges if the following conditions hold:

(a) ak ≥ ak+1 for all k.

(b) lim ak = 0.

Sketch of proof. With Sk the k−th partial

sum we have:

S2k = (a1−a2)+(a3−a4)+ · · ·+(a2k−1−a2k).

By (a), (a1−a2), (a3−a4), · · · , (a2k−1−a2k) ≥ 0.

Hence,

0 ≤ S2 ≤ S4 ≤ · · · ≤ S2k ≤ · · · .



and the sequence of partial sums {Sn} is non-

decreasing.

Also, we have:

S2k = a1 − (a2 − a3)− (a4 − a5)− · · ·
− (a2k−2 − a2k−1)− a2k ≤ a1.

and the sequence of partial sums {S2k} is bounded

above.

It follows that the sequence of partial sums

{S2k} is convergent; namely

limS2k = S.

On the other hand,

S2k+1 = S2k + a2k+1.

Hence, by (b),

limS2k+1 = limS2k + lim a2k+1 = S + 0 = S.

Thus the sequence of partial sums {Sk} is con-

vergent and the alternating series converges.



Example 1. (i) The alternating harmonic

series
∞∑

k=1

(−1)k+1

k

converges since (a) 1/k > 1/(k +1) for all k =

1,2, · · · , and (b) lim1/k = 0.

(ii) The alternating series

∞∑
k=1

(−1)k+1

k1/3

converges since (a)1/k1/3 > 1/(k+1)1/3 for all

k = 1,2, · · · , and (b) lim1/k1/3 = 0.

(iii) The alternating series

∞∑
k=1

(−1)k(1 + 1/k)k

diverges since lim(1 + 1/k)k = e 6= 0.



(iv) The alternating series

∞∑
k=1

(−1)k+1 ln k

k

converges since (a) the sequence {(ln k)/k} is
decreasing and (b) lim ln k/k = 0.

Definition 2. (Truncation Error) Let
∑∞

k=1 ak

be a convergent series with

S =
∞∑

k=1

ak and Sn =
n∑

k=1

ak.

Then the n−th truncation error of the series
is the value Tn = S − Sn.

Theorem 2. (Alternating Series Estimation
Theorem)

If the alternating series
∑∞

k=1(−1)k−1ak satis-
fies conditions (a) and (b) of Leibniz theorem,
then

|Tn| < an+1 and sgn Tn = sgn(−1)n.



Example 2. (i) The truncation error after 50

terms (T50) of the series alternating harmonic

series

∞∑
k=1

(−1)k+1

k
= 1−

1

2
+ · · · −

1

50
+

1

51
+ · · ·

is positive and is less than 1/51; namely 0 <

T50 < 1/51.

(ii) The truncation error after 101 terms (T101)

of the series

∞∑
k=1

(−1)k−1

2k−1
= 1−

1

2
+ · · ·+

1

2100
−

1

2101
+ · · ·

is negative and has size less than 1/2101; namely

−1/2101 < T101 < 0.



2. Absolute and conditional convergence.

Definition 3. (Absolute and Conditional Con-

vergence)

A series
∑∞

k=1 ak is said to converge

(a) absolutely if the series
∑∞

k=1 |ak| converges.

(b) conditionally if it converges but not abso-

lutely; namely
∑∞

k=1 ak converges and
∑∞

k=1 |ak|
diverges.

Example 3. (i) The alternating harmonic se-

ries
∑∞

k=1(−1)k+1/k converges conditionally since

it converges by Leibniz theorem and the har-

monic series diverges.

(ii) The series
∑∞

k=2(−1)k+1/ ln k converges con-

ditionally since, by Leibniz theorem, it con-

verges and, by the comparison test, the series



∑∞
k=1 1/ ln k diverges. For the latter, observe

that 1/ ln k > 1/k for all k > 1.

(iii) The series
∑∞

k=1(sin k)/k3/2 converges ab-

solutely, by the comparison test, since∣∣∣∣sin k

k3/2

∣∣∣∣ ≤ 1

k3/2
and

∞∑
k=1

1

k3/2
converges.

(iv) The series

1 + 1/2− (1/2)2 − (1/2)3 + (1/2)4

+(1/2)5 − (1/2)6 − (1/2)7 + · · ·

converges absolutely since

|±(1/2)k| = (1/2)k and
∞∑

k=1

(1/2)k converges.



Theorem 3. (Absolute Convergence Theo-
rem)

∞∑
k=1

|ak| converges ⇒
∞∑

k=1

ak converges.

Sketch of Proof.

(i) 0 ≤ ak + |ak| ≤ 2|ak|.

(ii)
∑∞

k=1 |ak| converges
⇒
∑∞

k=1(ak + |ak|) converges by (i).

(iii)
∑∞

k=1 |ak| and
∑∞

k=1(ak + |ak|) converge
⇒
∑∞

k=1 ak =
∑∞

k=1[(ak+|ak|)−|ak|] converges.

Remark 1. The converse of the absolute con-
vergence theorem need not hold: The alter-
nating harmonic series converges but the har-
monic series diverges.



Example 4. (i) The series
∑∞

k=1(sin k)/k3/2

converges since it converges absolutely.

(ii) The series
∑∞

k=1(−1)bk/3c/k3 converges since

it converges absolutely.

(iii) The series

1 + 1/2− (1/2)2 − (1/2)3 + (1/2)4

+(1/2)5 − (1/2)6 − (1/2)7 + · · ·

converges since it converges absolutely.

3. Rearranging of series.

Definition 4. A series
∑∞

k=1 bk is called a rear-

rangement of a series
∑∞

k=1 ak if the sequence

{bk} is a rearrangement of the sequence {ak}.



Theorem 4. (The Rearrangement Theorem

For Absolutely Convergent Series)

Suppose

(a)
∑∞

k=1 bk is a rearrangement of
∑∞

k=1 ak.

(b)
∑∞

k=1 ak converges absolutely.

Then
∑∞

k=1 bk converges absolutely and

∞∑
k=1

ak =
∞∑

k=1

bk.



Example 5. The series

∞∑
k=1

(−1)k+1

k2
=

1

12
−

1

22
+

1

32
−

1

42
+ · · ·

converges absolutely. By rearranging its terms

indefinitely we obtain

∞∑
k=1

(−1)k+1

k2
=

[
1

12
+

1

32
+ · · ·+

1

(2k − 1)2
+ · · ·

]

−
[

1

22
+

1

42
+ ·+

1

(2k)2
+ · · ·

]

=
∞∑

k=1

1

(2k − 1)2
−

∞∑
k=1

1

(2k)2
.



Ratio and root tests for absolute conver-
gence.

Theorem 5.(The ratio test for absolute con-
vergence)

Suppose the series
∑∞

1 ak satisfies ak 6= 0 for
all k ≥ 1, and suppose

lim

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ = L (possibly ∞.)

Then

(a) L < 1 ⇒
∑∞

1 ak converges (absolutely).

(b) L > 1 ⇒
∑∞

1 ak diverges.

(c) L = 1 ⇒
∑∞

1 ak is undecided.

Example 6. (i) The series
∑∞

1 (−1)k/k! con-
verges since

lim

∣∣∣∣∣(−1)k/(k + 1)!

1/k!

∣∣∣∣∣ = lim
1

k + 1
= 0 < 1.



(ii) The series
∑∞

1 (−1)kk3/10k converges since

lim

∣∣∣∣∣(−1)k(k + 1)3/10k+1

k3/10k

∣∣∣∣∣ =
1

10

(
lim

k + 1

k

)3
=

1

10
< 1.

(iii) The series
∑∞

1 (−1)k(2k)!/(k!)2 diverges

since∣∣∣∣∣(−1)k(2k + 2)!/[(k + 1)!]2

(2k)!/[(k)!]2

∣∣∣∣∣ = lim
4k + 2

k + 1
= 4 > 1.

(iv) The series
∑∞

1 (−1)kkk/k! diverges since

lim

∣∣∣∣∣(−1)k(k + 1)k+1/(k + 1)!

kk/k!

∣∣∣∣∣ =
lim

(
k + 1

k

)k

= e > 1.



Theorem 6. (The root test for absolute
convergence)

Suppose

lim k
√
|ak| = L (possibly ∞.)

Then

(a) L < 1 ⇒
∑∞

1 ak converges absolutely.

(b) L > 1 ⇒
∑∞

1 ak diverges.

(c) L = 1 ⇒
∑∞

1 ak is undecided.

Example 7. (i) The series
∑∞

2 (−1)k/(ln k)k

converges since

lim
k
√

1/(ln k)k = lim
1

ln k
= 0 < 1.

(ii) The series
∑∞

1 (−1)k2k/k3 diverges since

lim
k
√

2k/k3 = 2 lim

(
1
k
√

k

)3

= 2 > 1.



5. Summary of convergence and diver-

gence tests. See Textbook: Figure 8.2


