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1. Series and partial sums.

While it is possible to add two, three, hundred,

or even million real numbers, how can we at-

tach a meaning to a sum of infinitely many

numbers?

The theory of infinite series is an attempt to

answer this question.

To form an infinite series, we begin with a se-

quence

{a(n)} : a1, a2, · · · , an, · · ·

and establish the finite sums



S1 = a1 =
1∑

k=1

ak

S2 = a1 + a2 =
2∑

k=1

ak

...

Sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak

...

This leads us to consider the “infinite sum”
∞∑

k=1

ak = a1 + a2 + · · ·+ an + · · ·

which we shall call infinite series.



Definition 1. An infinite series of real num-
bers, or simply an infinite series, is an expres-
sion of the form

∞∑
k=1

ak = a1 + a2 + · · ·+ an + · · · .

The number ak is called the k−th term of the
series. The n−th partial sum of the series is
the finite sum

n∑
k=1

ak = a1 + a2 + · · ·+ an.

We say the series
∑∞

k=1 ak converges if the
sequence {Sn} of partial sums converges. If

lim
n→∞Sn = S,

then we say that the series
∑∞

k=1 ak converges
to S, or is convergent to S, and we write

S =
∞∑

k=1

ak.

On the other hand, if the sequence {Sn} di-
verges, then we say the series

∑∞
k=1 ak diverges,

or is divergent.



Example 1. The series

0.3 + 0.03 + · · ·+ 0.00 · · ·03 (k-1 zeros) + · · ·

has the following sequence of partial sums

0.3,0.33, · · · ,0.33 · · ·33 (k threes ), · · ·

which converges to 1/3. Hence,

∞∑
k=1

3

10k
=

1

3
.

Example 2. The series

∞∑
k=1

1

k(k + 1)
=

1

1.2
+

1

2.3
+

1

3.4
+· · ·+

1

k(k + 1)
+· · · ,

called a telescoping series, has partial sums

Sn =
n∑

k=1

1

k(k + 1)
=

1

1.2
+

1

2.3
+

1

3.4
+· · ·+

1

n(n + 1)
.

Observe that

1

k(k + 1)
=

1

k
−

1

k + 1
(k = 1,2, · · ·)



yields

Sn =
(
1

1
−

1

2

)
+
(
1

2
−

1

3

)
+

(
1

3
−

1

4

)
+ · · ·+

(
1

n
−

1

n + 1

)
.

= 1−
1

n + 1
.

Since

limSn = lim
(
1−

1

n + 1

)
= 1,

the series converges to 1, or,

∞∑
k=1

1

k(k + 1)
= 1.



2. Geometric series.

These are series of form
∞∑

k=1

ark−1 = a + ar + ar2 + · · ·+ ark−1 + · · · ,

where r is called the common ratio of the
series.

The n−the partial sum of this series is

Sn =
n∑

k=1

ark−1 = a + ar + ar2 + · · ·+ arn−1.

To find a compact form for Sn, consider

rSn =
n∑

k=1

= ar + ar2 + · · ·+ arn.

Then

(1− r)Sn = Sn − rSn = a(1− rn),

or

Sn = a
1− rn

1− r
(r 6= 1).



It follows that

limSn =

{
a/(1− r) for |r| < 1

fails to exist for |r| ≥ 1

We conclude that the geometric series
∑∞

k=1 ark−1

converges for |r| < 1

and

diverges for |r| ≥ 1 and a 6= 0.

In the case of convergence, we write

∞∑
k=1

ark−1 =
a

1− r
for |r| < 1.

Example 3. (i)

∞∑
k=0

1

2k
=

1

1− 1/2
= 2.

(ii)
∞∑

k=1

1

10k
=

1/10

1− 1/10
=

1

9
.



(iii)
∞∑

k=1

2

3k−1
=

2

1− 1/3
= 3.

(iv) The series

∞∑
k=0

(
5

4

)k

is divergent since it is a geometric series whose
common ratio is 5/4 > 1.

3. n−term test for divergence.

Theorem 1. If the series
∑∞

k=0 ak converges,
then lim an = 0.

Proof. If Sn is the n−th partial sum and∑∞
k=0 ak = S, then

an = Sn − Sn−1,

and

lim an = limSn − limSn−1 = S − S = 0.



Corollary 1. If

(i) lim an fails to exist, or

(ii) lim an 6= 0,

then the series
∑∞

k=0 ak diverges.

Example 4. (i) The series

∞∑
k=0

k

k + 1

diverges since lim k/(k + 1) = 1 6= 0.

(ii) The series
∞∑

k=1

ek

k

diverges since lim ek/k = ∞ 6= 0.



(iii) The series
∞∑

k=1

k√
k

diverges since lim k
√

k = 1 6= 0.

(iv) The series

∞∑
k=1

k!

10k

diverges since lim k!
10k = ∞ 6= 0.

(v) The series

∞∑
k=1

(2k)!

2k(k!)

diverges since lim (2k)!
2k(k!)

= ∞ 6= 0.

(vi) The series
∑∞

k=1 k ln(1+1/k) diverges since

lim k ln(1 + 1/k) = 1 6= 0.



Remark 1. The convergence condition lim an =

0 for the series
∑∞

k=1 ak is necessary but not

sufficient. We show that the harmonic series
∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+

1

n
+ · · · ,

called the harmonic series, is divergent even

though lim1/n = 0. To see this, we have:

S21 = S2 = 1 +
1

2
=

3

2

S22 = S4 = S2 +
1

3
+

1

4
> S2 +

1

4
+

1

4
=

4

2

S23 = S8 = S4 +
1

5
+

1

6
+

1

7
+

1

8

> S4 +
1

8
+

1

8
+

1

8
+

1

8
>

5

2
...

S2n ≥
n + 2

2
for every positive integer n.

This implies that the sequence {S2n} is diver-

gent, and so is the sequence {Sn}.



4. Algebra of convergent series.

Theorem 2. Suppose
∑∞

k=1 ak = A and
∑∞

k=1 bk =

B. Then

(a) Sum Rule:
∑∞

k=1(ak + bk) = A + B.

(b) Difference Rule:
∑∞

k=1(ak − bk) = A−B.

(c) Constant Multiple Rule:
∑∞

k=1 cak = cA.

Example 5. (i)

∞∑
k=0

(
5

2k
−

1

3k

)
=

5

(1− 1/2)
−

1

(1− 1/3)
=

17

2
.

(ii)

∞∑
k=1

[
1

k(k + 1)
+

1

2k

]
= 1 +

1/2

1− 1/2
= 2.



Theorem 3. (a) If series
∑∞

k=1 ak diverges and

c 6= 0 is a constant, then
∑∞

k=1 cak diverges.

(b) If series
∑∞

k=1 ak converges and series
∑∞

k=1 bk

diverges, then the series
∑∞

k=1(ak±bk) diverges.

Remark 2. If both series
∑∞

k=1 ak and
∑∞

k=1 bk

diverge, then series
∑∞

k=1(ak ± bk) may con-

verge or diverge.

Example 6. The series
∑∞

k=0(−1)k = 1− 1 +

1 − 1 + 1 − 1 + · · · diverges since its sequence

of partial sums 1,0,1,0,1,0, · · · diverges. The

series
∑∞

k=0(1/
√

π)k converges since it is a geo-

metric series of common ratio 1/
√

π < 1. Hence

the series

∞∑
k=0

(−1)k ±
(

1
√

π

)k


diverges.



5. General remarks.

(a) Re-indexing of series: A series can be
re-indexed without any alteration as follows:

∞∑
k=m

ak =
∞∑

k=m+r

ak−r =
∞∑

k=m−r

ak+r

for any integer r.

(b) Addition and deletion of terms: Adding
or deleting a finite number of terms in a series
does not change the nature of its convergence.
That is why one need not specify the lower in-
dex of a series when comes to to decide on
its convergence. nonetheless, in case of con-
vergence adding or deleting a finite number of
terms in a series may change the sum of the
series.

Example 7.We can write

∞∑
k=0

cos kπ

5k
=

∞∑
k=3

cos(k − 3)π

5k−3
=

∞∑
k=−1

cos(k + 1)π

5k+1
.


