CHAPTER 11: Infinite Series

311.2 Infinite Series

Section Contents:
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(3) n—th term test for divergence.
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(5) General remarks.



1. Series and partial sums.

While it is possible to add two, three, hundred,
or even million real numbers, how can we at-
tach a meaning to a sum of infinitely many
numbers?

The theory of infinite series is an attempt to
answer this question.

To form an infinite series, we begin with a se-
quence

{a(n)} :ay,a9, -+, an, -

and establish the finite sums
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Sn = a1+ax+-Fan= ) a;
k=1

This leads us to consider the “infinite sum”

Zak:a1+a2+...+an+...
k=1

which we shall call infinite series.



Definition 1. An infinite series of real num-
bers, or simply an infinite series, is an expres-
sion of the form

@)

Z ar =a1+as+---+an+---.

k=1
The number a, is called the k—th term of the
series. The n—th partial sum of the series is
the finite sum

n
Z arp =ai1 +ax~+ -+ an.
k=1
We say the series 72 ; a; converges if the
sequence {Sp} of partial sums converges. If

n—oo

then we say that the series Zzozl a. CONverges
to S, or is convergent to S, and we write

o0
S — Z ar.
k=1

On the other hand, if the sequence {S,} di-
verges, then we say the series > 72 ; a; diverges,
or is divergent.



Example 1. The series

0.3+0.03+:---4+0.00---03 (k-1 zeros) + - --

has the following sequence of partial sums

0.3,0.33,---,0.33---33 (k threes ), - --

which converges to 1/3. Hence,
31

= 10k 3
Example 2. The series
e 1 1 1 1 1
k; k1) 12123 34t Tt
called a telescoping series, has partial sums
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1 1 1 1
Sn = ,;::1 k(k+1) 1223 341 '+n(n +1)

Observe that
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Since
. . 1
IlmSn:I|m<1— ):1,
n-+1
the series converges to 1, or,
e 1
) =1
—1 k(k+1)



2. Geometric series.

These are series of form
o0
> ar* l=atartar’+ - FarfF 4.
k=1

where r is called the common ratio of the
series.

The n—the partial sum of this series is
n
Sy = Z arF "l =a+ar4+ar?+.-. - F+ar” L
k=1

To find a compact form for Sy, consider

n
rSp = Z —ar4+ar®+ -+ ar™
k=1

Then
(1—-—r)Sn=8Sp—1rSp=a(l —r"),

or

(r #1).



It follows that

im S, — a/(1—r) for|rl<1
"7 fails to exist for |r| > 1

We conclude that the geometric series Ziozl ark—1

converges for |r| < 1

and

diverges for |r| > 1 and a # 0.

In the case of convergence, we write

> a
> arfF=1 = for |r| < 1.

Example 3. (i)

— = _
=2k T 1-1/2
(ii)
>© 1 1/10 1

> or = -5
10T 1-1/10° 9



(iii)
< 2 2

= = 3
k; 31 1-1/3

(iv) The series

> (3)
k=0 4
IS divergent since it is a geometric series whose

common ratio is 5/4 > 1.
3. n—term test for divergence.

Theorem 1. If the series > 72 ja; converges,
then limay = 0.

Proof. If S,, is the n—th partial sum and
> pepar =25, then

an = Sp — Sp—1,
and

iman = limS, —limS, 1 =8-S =0.



Corollary 1. If

(i) limay fails to exist, or

(ii) limay # O,

then the series > 72 4ay diverges.

Example 4. (i) The series
S k
=0 kE—+1

diverges since limk/(k+1) =1 # 0.

(ii) The series
>
k=1 k

diverges since lime”f /k = oo # 0.



(iii) The series
> k
S Vk
k=1
diverges since lim /k = 1 # 0.

(iv) The series

0kl
2 1ok

k=1

diverges since |lim 1k_o!k = oo #= 0.

(v) The series

2 (2k)!
2 2k (K1)

k=1

diverges since lim 2(13(?!!) = oo = 0.

(vi) The series }"02 1 kIn(1+41/k) diverges since
imkIn(l+1/k) =1 # 0.



Remark 1. The convergence condition lima, =

O for the series Ziozl aj. 1S necessary but not

sufficient. We show that the harmonic series
Syl gty

r—1 k 2 3 n

called the harmonic series, is divergent even

though lim1/n = 0. To see this, we have:

So1 =52 = 1—|—%:§
Sp2 =54 = Sz+%+%>32-|—%+%=g
Sp3 = S8 = S4+%-I-é+%—l—%
> S4+é+é+é+é>g
527; > nt2 oo every positive integer n.

This implies that the sequence {Son} is diver-
gent, and so is the sequence {Sn}.



4. Algebra of convergent series.

Theorem 2. Suppose Y22 ;ap = Aand Y22 ; by =
B. Then

(a) Sum Rule: >72 ;(ap +b;) = A+ B.
(b) Difference Rule: 92 ;(ap —by) = A— B.
(c) Constant Multiple Rule: 22  ca;, = cA.

Example 5. (i)

© /5 1 5 1 17
,;O(Qk_?)k):(1—1/2)_(1—1/3): 2
(ii)

1/2
1—1/2_2

S 1 1
+ —] =1+
k§=:1 [k(k +1) 2k



Theorem 3. (a) If series 3°72 ; a;, diverges and
c # 0 is a constant, then > 72 ; cay diverges.

(b) If series >-72 ; aj converges and series >-7° ; by
diverges, then the series >-7° ; (ap%by) diverges.

Remark 2. If both series > 22 ; ap and 272, by
diverge, then series >°7° ;(ay £ by) may con-
verge or diverge.

Example 6. The series ¥ (-1)*=1-1+
1—-1+1-—-1+4--- diverges since its sequence
of partial sums 1,0,1,0,1,0,--- diverges. The
series Zzozo(l/ﬁ)k converges since it is a geo-
metric series of common ratio 1/4/7 < 1. Hence

the series
00 k
(—1)F & (i> }
= [ Vr

diverges.



5. General remarks.

(a) Re-indexing of series: A series can be
re-indexed without any alteration as follows:

@) @) 0
Z A — Z A —pr — Z Af+-r
k=m k:m—|—fr’ k=m—r

for any integer r.

(b) Addition and deletion of terms: Adding
or deleting a finite number of terms in a series
does not change the nature of its convergence.
That is why one need not specify the lower in-
dex of a series when comes to to decide on
its convergence. nonetheless, in case of con-
vergence adding or deleting a finite number of
terms in a series may change the sum of the
series.

Example 7.\We can write

o Coskm X cos(k—3)m X cos(k+ 1)m
5k Z 5k—3 o k—zzl 5k+1




