CHAPTER 11: Infinite Series
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1. Alternating series.

The following are alternating series:
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Definition 1. (Alternating Series)

An alternating series is of form
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where each a; > 0.
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Theorem 1. (Alternating Series Test; Leib-
niz)

The alternating series
- k—1
Y. (=D ap = a1 —ax+az—agz+--
k=1

+ (D ta 4,

converges if the following conditions hold:
(a) ap > Af+41 for all k.
(b) lima; = 0.

Sketch of proof. With S, the k—th partial
sum we have:

Sor = (a1 —an)+(az—ag)+- -+ (app_1 —aog).

By (a), (a1—a2),(az—asg), -, (asp_1—as;) > 0.
Hence,



and the sequence of partial sums {S,} is non-
decreasing.

Also, we have:
Sor, = a1 — (ap—a3) — (aa —ag) — -
— (aggp—2 —ag_1) —ag, < ay.

and the sequence of partial sums {S5.} is bounded
above.

It follows that the sequence of partial sums
{S5,} is convergent; namely

lim SQk = S.
On the other hand,
Sok+1 = Sok + agk4-1-
Hence, by (b),
lim SQk—I—l = |lim SQk -+ lim A2k+41 = S+0=25..

Thus the sequence of partial sums {S.} is con-
vergent and the alternating series converges.



Example 1. (i) The alternating harmonic

series
00 (_ 1)k—|—1
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k=1
converges since (a) 1/k> 1/(k+1) for all k =
1,2,---,and (b) lim1/k = 0.

(ii) The alternating series
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converges since (a)1/k/3 > 1/(k+1)1/3 for all
k=1,2,---, and (b) lim1/k/3 = 0.

(iii) The alternating series

oo

S (—1)FQ + 1/k)F
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diverges since lim(1 4+ 1/k)* = e £ 0.



(iv) The alternating series
i (_1>k+1@
k=1 k

converges since (a) the sequence {(Ink)/k} is
decreasing and (b) limink/k = 0.

Definition 2. (Truncation Error) Let }>22 ; ag
be a convergent series with

00 n
S = Z af and S, = Z af.

Then the n—th truncation error of the series
is the value T, = S — S,,.

Theorem 2. (Alternating Series Estimation
Theorem)

If the alternating series Zgozl(—l)k_lak satis-
fies conditions (a) and (b) of Leibniz theorem,
then

Tn| < ap41 and sgn T, = sgn(—1)".



Example 2. (i) The truncation error after 50
terms (Tgn) of the series alternating harmonic
series
X (—1)krl 1 1 1
Z( ) =14 . - 4+ 4.
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iSs positive and is less than 1/51; namely 0 <
Ts0 < 1/51.

(ii) The truncation error after 101 terms (T991)
of the series

ioj (—1)k-1 _1_1_|_..._|_L_L_|_...
= ok—1 2 2100 92101

is negative and has size less than 1/2191: namely
—1/2101 < T101 < O.



2. Absolute and conditional convergence.

Definition 3. (Absolute and Conditional Con-
vergence)

A series > 72 4 ay is said to converge
(a) absolutely if the series -7 ; |ay| converges.

(b) conditionally if it converges but not abso-
lutely; namely >°72 ; a; converges and > 72 ; |a|
diverges.

Example 3. (i) The alternating harmonic se-
ries 2%, (—1)*T1/k converges conditionally since
it converges by Leibniz theorem and the har-
monic series diverges.

(i) The series - ,(—1)*T1/Ink converges con-
ditionally since, by Leibniz theorem, it con-
verges and, by the comparison test, the series



> pe11/Ink diverges. For the latter, observe
that 1/Ink > 1/k for all £ > 1.

(ii) The series 322, (sin k) /k3/2 converges ab-
solutely, by the comparison test, since

sin k 1
k3/2'

©.@)
1
< 132 and g_:lm converges.

(iv) The series
141/2—(1/2)% - (1/2)° + (1/2)*
+(1/2)° = (1/2)° = (1/2)" + -+

converges absolutely since

1+(1/2)F| = (1/2)* and i (1/2)* converges.
k=1



Theorem 3. (Absolute Convergence Theo-

rem)
@) @)
> lag| converges = > a; converges.
k=1 k=1

Sketch of Proof.

(i) 0 <ag + |ag| < 2|agl.

(i) 3229 |ag| converges
= > 1 (ar + |ag|) converges by (i).

(i) >72q |ag| and 3272 ; (ag + |ag|) converge
= > 021 ar = > 72 [(ag+]ag|)—lag|] converges.

Remark 1. The converse of the absolute con-
vergence theorem need not hold: The alter-
nating harmonic series converges but the har-
monic series diverges.



Example 4. (i) The series Y22, (sink)/k3/?
converges since it converges absolutely.

(i) The series 222, (—1)¥/3] /k3 converges since
it converges absolutely.

(iii) The series
1+1/2—(1/2)2 - (1/2)3 + (1/2)*
+(1/2)° = (1/2)° = (1/2)" + -+
converges since it converges absolutely.

3. Rearranging of series.

Definition 4. A series } 72 ; b is called a rear-
rangement of a series > 72 ; ay if the sequence
{b,} is a rearrangement of the sequence {a;}.



Theorem 4. (The Rearrangement Theorem
For Absolutely Convergent Series)

Suppose
() X721 by is a rearrangement of 3°92 ; ay.
(b) >o72q a converges absolutely.

Then > 72 ; b, converges absolutely and

o oo
Yoap= ) b
k=1 k=1



Example 5. The series

X (=1L 1 1 11
];1 212 2T

converges absolutely. By rearranging its terms
indefinitely we obtain
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Ratio and root tests for absolute conver-
gence.

Theorem 5.(The ratio test for absolute con-
vergence)

Suppose the series } 3° a; satisfies a; = 0 for
all £ > 1, and suppose

ap41
ag

lim

= L (possibly c.)

Then

(a) L < 1= 3 {a; converges (absolutely).
(b) L > 1= >9%a; diverges.

(c) L =1= Y 7a; is undecided.

Example 6. (i) The series >%°(—1)%/k! con-
verges since

(—1)%/(k+ 1)!
1/k!
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=lim—— =0 < 1.
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(i) The series :3°(—1)¥%k3/10% converges since

p(k+1)3/108 11
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(iii) The series Y3°(—1)F(2k)!/(k")? diverges

since

(1) E+ DYk + D2
(2k)1/[(K)1]=

4k+2

4 > 1.
k+1

(iv) The series ¥3°(—1)*k*/k! diverges since

)kU« + DFL/(k4 1)
Kk k! -
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Theorem 6. (The root test for absolute
convergence)

Suppose

Then

(a) L <1= Y 7°a, converges absolutely.
(b) L > 1= >9%a; diverges.

(c) L =1= Y 3a is undecided.

Example 7. (i) The series Y5°(—1)%/(Ink)¥
converges since

1
im ¢/1/(Ink)k = M- =0<1.

(i) The series YX°(—1)k2k/k3 diverges since

3
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5. Summary of convergence and diver-
gence tests. See Textbook: Figure 8.2



