
CHAPTER 11: Infinite Sequences and Series
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1. Definition and notation of sequences.

Definition 1. An infinite sequence of real

numbers, or simply a sequence, abbreviated

as seq., is a real-valued function whose domain

is the set of integers greater than or equal to

some positive integer m.

Example 1. The functions

a(n) = n2 n = 0,1, · · · ;

b(n) = (−1)n+1/n n = 1,2, · · · ;

c(n) =
√

lnn n = 1,2, · · · ;

d(n) = en/n5 n = 1,2, · · · ;

are sequences of real numbers.



Let a be a sequence defined for positive inte-

gers n ≥ m for some positive integer m. Then

the range of the sequence is

{a(m), a(m+ 1), a(m+ 2), · · ·},

or

{a(n)}∞n=m,

or simply

{a(n)}

without reference to the upper and lower in-

dices. Usually, the range of a as an ordered

set is called the sequence a.

Traditionally, a(n) is denoted by an in which

case the sequence a becomes

{am, am+1, am+2, · · ·},

or

{an}∞n=m,



or simply

{an}.

We call am, am+1, · · · , an, · · · the terms of the

sequence a; in particular, we call an the n−th

term.

Example 2. The sequence whose n−th term

is an = 1/n can be written as

{1,1/2,1/3, · · · ,1/n, · · ·},

or

{1/n}∞n=1, or {1/n}.

Also, the sequence whose n−th term is bn =√
lnn, where n ≥ 1, can be written as

{0,
√

ln 2,
√

ln 3, · · · ,
√

lnn, · · ·},

or {
√

lnn}∞n=1, or {
√

lnn}.



Graphical Representation of sequences.

A sequence a = {an}∞n=m is represented graph-

ically in two ways as follows.

(i) By its graph as the function a(n) = an,

where n = m,m+ 1, · · · .

(ii) By the graphs of the terms an on the real

axis.

Example 3. The graphs of the sequence {
√
n}

are



2. Convergence and Divergence of Se-
quences.

Definition 2. A sequence {an} is said to con-
verge to a real number L if for every positive
value ε there exists a positive integer N such
that

n > N ⇒ |an − L| < ε.

In this case we write:

lim
n→∞ an = L or lim an = L

or

an → L as n→∞.

Graphically this means that in any open inter-
val about L there lies all but finitely many of
the terms an of the sequence.

the sequence {an} is said to diverge if it does
not converge.



Example 4. We show that lim c = c, c is a

constant. Fix ε > 0, and let N be any positive

integer. Since

n > N ⇒ |c− c| = 0 < ε,

lim c = c.

Example 5. We show that lim 1/n = 0. Fix

ε > 0, and choose a positive integer N > 1/ε.

Then

n > N ⇒
1

n
<

1

N
< ε,

or

n > N ⇒
∣∣∣∣1n − 0

∣∣∣∣ < ε

which proves lim 1/n = 0.



Example 6. We show that lim an = 1/3, where

an = 0.33 · · ·3 with 3 repeated n times. First

observe that for ε > 0,

|an −
1

3
| =

∣∣∣∣0.99 · · ·9− 1

3

∣∣∣∣ (9 repeated n times)

=
1

3
10−n <

1

n
< ε

implies n > 1/ε. Thus if we choose a positive

integer N such that N > 1/ε, then

n > N ⇒ |an −
1

3
|

= |
0.99 · · ·9− 1

3
| (9 repeated n times)

=
1

3
10−n

<
1

n
<

1

N
< ε.

Therefore, lim an = 1/3.



3. Calculating limits of sequences.

Theorem 1. (Algebra of Limits)

If lim an = A and lim bn = B. Then

• Sum Law: lim(an ± bn) = A±B.

• Product Law: lim(anbn) = AB.

• Quotient Law: lim an/bn = A/B

provided that B, bn 6= 0.

• Multiple Law: lim(kan) = kA; k constant.



Example 7. (i)

lim
n± 5

n
= lim(1±

5

n
)

= lim 1± 5 lim
1

n
= 1± (5)(0) = 1.

(ii)

lim
10

n2
= 10 lim

1

n2
= 10 lim

(
1

n

)2
= (10)(0) = 0.

(iii)

lim
3n5 − n2 + 1

2n5 − 7
= lim

3− 1/n3 + 1/n5

2− 7/n5
=

3

2
.

(iv) If ar and bs are nonzero, then

lim
arnr + ar−1x

r−1 + · · ·+ a0

bsns + as−1ns−1 + · · ·+ b0

equals ar/bs if r = s, zero if r < s, and∞ if r > s

and ar/bs > 0 and −∞ if r > s and ar/bs < 0.



Theorem 2. (Sandwich Theorem)

Suppose that

(i) an ≤ bn ≤ cn for n > m, where m is a fixed

positive integer, and if

(ii) lim an = lim cn = L for some real number

L.

Then lim bn = L.

Example 8. (i)

lim
cosn

n
= 0

since ∣∣∣∣cosn

n

∣∣∣∣ ≤ 1

n
.



(ii)

lim
(−1)n

n
= 0

since ∣∣∣∣∣(−1)n

n

∣∣∣∣∣ ≤ 1

n
.

(iii)

lim

√
4 +

1

n2
= 2

since

2 =
√

4 <

√
4 +

1

n2
<

√
4 +

2

n
+

1

n2

=

√
(2 +

1

n
)2 = 2 +

1

n

and lim 2 = lim(2 + 1/n) = 2.



Theorem 3. (Continuous Function Theorem)

Suppose that

(i) lim an = L and

(ii) f is a continuous function at L.

Then lim f(an) = f(lim an) = f(L).

Example 9. (i) lim cos(π/n) = cos(limπ/n) =
cos 0 = 1.

(ii)

lim

√
4 +

1

n2
=

√
lim(4 +

1

n2
)

=

√
4 + lim

1

n2
= 2.

(iii) lim 31/n = 3lim 1/n = 30 = 1.

(iv) lim ln(n/(n + 1)) = ln[lim(n/(n + 1))] =
ln 1 = 0.



Theorem 4. ( L’Hôpital’s rule)

Let a be a real number or ±∞. Suppose

(i) limx→a f(x) = limx→a g(x) = 0,∞,−∞, re-

spectively, or

lim
x→a f(x) = ±∞ and lim

x→a g(x) = ∓∞.

(ii) f and g are differentiable around a.

Then

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)

provided that the right limit exists or is infinite.



Corollary 1. Under the assumptions of Theo-

rem 4, if

an =
f(n)

g(n)
, (n > m)

for some positive integer m, then

lim an = lim
f(n)

g(n)
= lim

f ′(n)

g′(n)
.



Example 9. (i)

lim
lnn

n
= lim

x→∞
lnx

x

= lim
x→∞

(lnx)′

(x)′

= lim
x→∞

1/x

1
= 0.

Hence,

lim
n→∞

lnn

n
= 0. (1)

(ii)

limn1/n = lim e(lnn)/n

= elim(lnn)/n = e0 = 1.

Hence,

lim
n→∞n

1/n = 1. (2)



(iii) For a fixed real number x we have:

lim
n→∞

(
1 +

x

n

)n
= lim

n→∞ e
n ln(1+x/n)

= lim
n→∞ e

ln(1+x/n)
1/n

= lim
t→∞

e
ln(1+x/t)

1/t

= e
limt→∞

[1/(1+x/t)][−x/t2]

−1/t2

= elimt→∞ x/(1+x/t) = ex.

Hence,

lim
n→∞

(
1 +

x

n

)n
= ex. (3)

If x = 1, then (3) gives:

lim
n→∞

(
1 +

1

n

)n
= e (−∞ < x <∞).



The following limits can also be shown for a

fixed real value x.

lim
n→∞x

n = 0 (|x| < 1). (4)

lim
n→∞x

1/n = 1 (x > 0). (5)

lim
n→∞

xn

n!
= 0 (−∞ < x <∞). (6)



5. Familiar limits. The following limits are

useful for problem solving:

lim
n→∞

lnn

n
= 0.

lim
n→∞n

1/n = 1.

lim
n→∞

(
1 +

x

n

)n
= ex.

lim
n→∞x

n = 0 (|x| < 1).

lim
n→∞x

1/n = 1 (x > 0).

lim
n→∞

xn

n!
= 0 (−∞ < x <∞).



6. Recursively defined sequences.

Definition 3. A sequence {an}∞m is said to be

defined recursively if its definition consists of

(a) values of one or more terms, and

(b) a recursive formula that yields the re-

maining terms.



Example 10. (i) The recursive definition of

the sequence in Example 4(ii) is given by the

following:

(a) a1 =
√

2;

(b) an+1 =
√
an for all n ≥ 1.

(ii) The sequence {an}∞1 defined recursively by

setting

(a) a1 = 1 and

(b) an+1 = an + (−2)n for all n ≥ 1

has initial terms: 1,−1,3,−5,11, · · · . Note that

the sequence does not converge; for if lim an →
L, then, by using the recurrence formula (b),

L = L+ lim(−2)n

which gives the false conclusion lim(−2)n = 0.



(iii) The Fibonacci sequence is defined recur-

sively by setting

(a) a1 = a2 = 1 and

(b) an+1 = an + an−1 for all n ≥ 2.

This sequence has the initial terms

1,1,2,3,5,8,13, · · ·

Can you find an explicit formula for an?



7. Monotone and bounded sequences.

Definition 4. A sequence {an}∞n=m is said to
be a

(a) nondecreasing sequence if

am ≤ am+1 ≤ · · · ≤ an ≤ · · ·
or

an ≤ an+1 (n ≥ m).

(b) nonincreasing sequence if

am ≥ am+1 ≥ · · · ≥ an ≥ · · ·
or

an ≥ an+1 (n ≥ m).

(c) monotone sequence if it is either a non-
decreasing or a nonincreasing sequence.

If in (a) and (b) the inequalities were strict,
then we may say the sequence {an}∞n=m is strictly
increasing, strictly decreasing. In this case
we may also say that the sequence is strictly
monotone.



Example 11. (i) The sequence

0.1,0.11, · · · ,0.11 · · ·1(1 n times), · · ·

is nondecreasing (strictly increasing)

(ii) the sequence {(lnn)/n}∞n=3 is nonincreas-

ing (strictly decreasing) since

d

dx

lnx

x
=

1− lnx

x2
< 0 (x ≥ 3).

(iii) the sequence {b−n/2c}∞n=1 is nonincreas-

ing since it is the sequence

−1,−1,−2,−2,−3,−3, · · · .



Definition 5. A sequence {an}∞n=m is said to

be

(a) bounded from above if there exists a real-

value K such that

an ≤ K (n ≥ m).

(b) bounded from below if there exists a real-

value k such that

an ≥ k (n ≥ m).

(c) bounded if it is bounded from above and

below; i.e. there exists a real-value M such

that

|an| ≤M (n ≥ m).

Moreover, the sequence {an}∞m is said to have

an upper bound K if (a) holds, a lower bound

K if (b) holds, and a bound M if (c) holds.



Example 12. (i) The sequence {−n2}∞n=1 is

bounded above by zero but1 is not bounded

below.

(ii) The sequence {bn/3c}∞n=1 is bounded be-

low by zero but is not bounded above.

(iii) The sequence {(−1)n(1−1/n)}∞n=1 is bounded

by 1 since

|(−1)n(1− 1/n)| = 1− 1/n ≤ 1.



Theorem 5. (Monotone Sequence Theorem)

Every bounded monotone sequence is conver-
gent. In particular, a sequence {an} that is

(a) nondecreasing and bounded above is con-
vergent, and

(b) nonincreasing and bounded below is con-
vergent.

Example 13. (i) The sequence {tan−1 n}∞n=1
is bounded above and nondecreasing. Hence it
is convergent; in fact, lim tan−1 n = π/2.

(ii) The sequence

{21/(2n)}∞n=1 :
√

2,
√√

2,

√√√
2, · · ·

is bounded below and nonincreasing. Hence
it is convergent. The conclusion can also be
obtained by observing that the sequence is a
subsequence of {21/n} which converges to 1.


